首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7556篇
  免费   845篇
  国内免费   1321篇
化学   7444篇
晶体学   159篇
力学   135篇
综合类   29篇
数学   469篇
物理学   1486篇
  2024年   12篇
  2023年   135篇
  2022年   174篇
  2021年   277篇
  2020年   327篇
  2019年   300篇
  2018年   271篇
  2017年   290篇
  2016年   327篇
  2015年   306篇
  2014年   397篇
  2013年   656篇
  2012年   488篇
  2011年   511篇
  2010年   388篇
  2009年   498篇
  2008年   561篇
  2007年   513篇
  2006年   457篇
  2005年   434篇
  2004年   424篇
  2003年   325篇
  2002年   261篇
  2001年   162篇
  2000年   153篇
  1999年   128篇
  1998年   142篇
  1997年   92篇
  1996年   111篇
  1995年   107篇
  1994年   108篇
  1993年   79篇
  1992年   69篇
  1991年   53篇
  1990年   35篇
  1989年   21篇
  1988年   23篇
  1987年   12篇
  1986年   19篇
  1985年   21篇
  1984年   3篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1967年   2篇
排序方式: 共有9722条查询结果,搜索用时 15 毫秒
1.
Despite fundamental importance, the experimental characterization of the hydrogen bond network, particularly in multicomponent protic solutions, remains a challenge. Although recent work has experimentally validated that the oxygen K-edge X-ray absorption spectra is sensitive to local hydrogen bond patterns in pure water and aqueous alcohol solutions, the generality of this observation is unknown—as is the sensitivity to the electronic structure of the alcohol cosolvent. In this work, we investigate the electronic structure of water solvated alcohol model geometries using energy specific time-dependent density functional theory to calculate oxygen K-edge X-ray excitations. We find that the geometry of dangling hydrogen bonds in pure water is the main contributor to the pre-edge feature seen in the X-ray absorption spectra, agreeing with previous experimental and theoretical work. We then extend this result to solvated alcohol systems and observe a similar phenomenon, yet importantly, the increase of electron donation from alkyl chains to the alcohol OH group directly correlates to the strength of the core excitation on the dangling hydrogen bond model geometry. This trend arises from a stronger transition dipole moment due to electron localization on the OH group.  相似文献   
2.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   
3.
[Cp*Rh(κ3N,N′,P- L )][SbF6] (Cp*=C5Me5), bearing a guanidine-derived phosphano ligand L , behaves as a “dormant” frustrated Lewis pair and activates H2 and H2O in a reversible manner. When D2O is employed, a facile H/D exchange at the Cp* ring takes place through sequential C(sp3)−H bond activation.  相似文献   
4.
The reaction of N,C,N-chelated stibinidene ArSb ( 1 ) (Ar=C6H3-2,6-(CH=NtBu)2) with selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) gave the addition products with bridged bicyclic [2.2.1] structure containing an antimony atom at the bridgehead position, fused with a 6-membered benzene and a 5-membered N-alkyl/aryl-pyrrolidine ring. These compounds were completely characterized. More importantly, additional studies showed that these reactions are reversible in solution, thereby representing an unprecedented reversible activation of a C=C bond by an antimony(I) compound.  相似文献   
5.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   
6.
The N–N bond is present in many important organic compounds, such as hydrazines, pyrazoles, azos, etc. Many methods based on transition metal catalyzed N–N coupling or functionalization of hydrazine have been reported for the synthesis of N–N containing organic compounds. In recent years, electrochemical dehydrogenative N–H/N–H coupling has become a powerful tool for the construction of N–N bearing organic compounds. The electrochemical methods employ electrons as traceless redox reagents instead of chemicals and produce hydrogen as the only byproduct. In this review, we summarize the recent advances in the electrochemical dehydrogenative N–H/N–H coupling reactions with focus on the mechanistic insights and synthetic applications of these transformations.  相似文献   
7.
In this communication, the study on the effect of Ni2+ substitution on structural, magnetic and electrical transport properties were performed in Pr0.75Na0.25Mn1-xNixO3 (x = 0–0.10) ceramics synthesized using conventional solid-state method. X-ray diffraction patterns showed that all samples were present in single phase and crystallized in orthorhombic structure with Pnma space group. Rietveld refinement analysis revealed unit cell volume slight increase with increase Ni concentration, thereby indicating partial substitution of Ni2+ at Mn3+. The presence majority of Ni2+ states in the compound were confirmed by X-ray photoelectron spectrum. Tolerance factor calculation suggested that Ni substitution exerted no strong effect on structural distortion. For un-doped sample (x = 0), AC susceptibility (χ′) against temperature (T) curve showed paramagnetic (PM)–antiferromagnetic(AFM) behavior at Neel temperature (TN) of approximately 170 K. Furthermore, resistivity (ρ) against temperature (T) curve showed an insulating behavior for the whole measured temperature range. The χ′ against T curve of x = 0 sample showed broad peak at approximately 218 K which was attributed to the onset of charge ordered (CO) state. No such broad peak was observed in Ni-substituted samples which indicated the weakening of CO state. Moreover, χ′ measurements exhibited successful inducement of PM–FM transition with Curie temperature (TC), decreasing from 132 K (x = 0.02) to 92 K (x = 0.08). Electrical resistivity measurement on samples (x = 0.02–0.08) displayed inducement of metal–insulator transition, where transition temperature (TMI) decreased and resistivity increased, with x before re-entrant insulating behavior at x = 0.10. Notably, upturn resistivity was observed below 40 K for x = 0.06 and 0.08 samples. The suppression of CO state and inducement of ferromagnetic-metallic (FMM) state beginning from x = 0.02 sample was attributed to the reduced degree of Jahn–Teller distortion and Coulomb interaction among Mn ions, as well as the presence of ferromagnetic superexchange (FM SE) interaction among Ni2+–O–Mn4+ which improved the alignment charge carrier spins and induced the double-exchange (DE) interaction among Mn3+–O–Mn4+. The decrease in TC and TMI with increased x may be due to the enhanced AFM SE interactions of Mn3+–O–Mn3+, Mn4+–O–Mn4+ and Ni2+–O–Ni2+ which decreased the FM SE interaction of Ni2+–O–Mn4+. Consequently, the effective DE interaction was decreased. In addition, the decreased metallic behavior and re-entrant insulating behavior for x = 0.10 sample was due to the strong AFM interaction between Ni2+ ions which consequently contributed to the suppression of FM SE and DE interactions. The observed upturn resistivity below 40 K for x = 0.06 and 0.08 samples was attributed to the Kondo-like effect which resulted from the interaction between itinerant conduction electron spin and localized spin impurity.  相似文献   
8.
Herein we report a versatile Mizoroki–Heck-type photoinduced C(sp3)−N bond cleavage reaction. Under visible-light irradiation (455 nm, blue LEDs) at room temperature, alkyl Katritzky salts react smoothly with alkenes in a 1:1 molar ratio in the presence of 1.0 mol % of commercially available photoredox catalyst without the need for any base, affording the corresponding alkyl-substituted alkenes in good yields with broad functional-group compatibility. Notably, the E/Z-selectivity of the alkene products can be controlled by an appropriate choice of photoredox catalyst.  相似文献   
9.
Ioan Baldea 《中国物理 B》2022,31(12):123101-123101
Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.  相似文献   
10.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号